

CITYLAB – City Logistics in Living Laboratories

Floating Depot

Tom Cherrett Transportation Research Group University of Southampton <u>www.citylab-project.eu</u>

CITYLAB facts

- Horizon 2020, Mobility for Growth 2014-2015
- Topic MG-5.2-2014 *Reducing impacts and costs of freight and service trips in urban areas*
- Budget 3,98 Mill Euro
- 1 May 2015 30 Apr 2018
- 24 partners, 7 countries

Southamp

What we will do

- Improve knowledge and understanding about the impacts of freight distribution and service trips in urban areas;
- Implement and test 7 innovative solutions that reduce the negative impacts of freight vehicles whilst enhancing business profitability
- Provide a platform to aid the replication and roll out of the solutions in other cities

Emission free city logistics in urban centres by 2030

635898 CITYLAB

Southar

Paris

The living labs

LONDON: New distribution hub concepts and clean vehicles

ROME: Integration of direct and reverse logistics

BRUSSELS: Increasing load factors by utilizing free van capacity

ROTTERDAM: Floating depot

PARIS: Logistics hotel

OSLO: Common logistics functions for shopping centers

SOUTHAMPTON: Joint procurement and consolidation for large public institutions

635898 CITYLAB

The consolidation concept and the background to the Floating Depot

Environmental impact

Change in emissions (Negative = reduction)	
CO ₂	-24%
SO ₂	-24%
NOx	+48%
PM2.5	-59%
PM10	-22%

Calculation are based on the STREAM emission factors (Den Boer, E., M. Otten, and H. van Essen (2011). *STREAM International Freight 2011 – Comparison of various transport modes on a EU scale with the STREAM database*, Delft, CE Delft, July 2011.)

Costs and benefits

Increase in operating costs: deliveries and pick-ups through the Mobile Depot are twice as expensive

- Load rate during demonstration was 40% (on average)
- Importance of having a high stop density
- Freight profile delivery area should match load capacity of tricycles and mobile depot to make the concept efficient
- Process optimization
- Higher cost of subcontracting to cycle couriers

Mobile depot needs to be located within delivery area to minimize the stem time of the cyclocargos

Amsterdam: Floating Depot Trial

PostNL Challenge: Zero emissions in the Dutch city-centres by 2017

- 1. Parcels delivered to the floating depot hub (a.m.)
- 2. Parcels are sorted and loaded onto the floating depot
- 3. Floating depot is moved into the city centre and moored as a hub
- 4. Parcels delivered by electric vehicles, re-loading at the floating depot
- 5. At the end of the shift, floating depot returns to its hub
- 6. Parcels are unloaded and returned to the Parcel Sorting Centre

Overview: Floating Depot pilot in Amsterdam

ab

Vehicles

Pushboat (hybrid) & Floating depot

Goupil/ Cargobike

Vehicles

Floating Depot Characteristics

- Floating Depot 1.0 is dependent on push boat
- Has a build-in lift, (to lower itself to pass bridges and to level with the quay)

Dimensions:

- Height: 2.30m, fully raised, 1.10m when lowered
- Width: 4 m
- Length: 10m
- Capacity: around 30 40 Roll cages

Southampton

Previous attempts: Vert Chez Vous, Paris

April 2013

Paris freight facts

Southar

The urban freight transport is:

- 20% of road occupancy
- 30 to 40% of the pollution

Delivery of the final km = 20% of the total cost of the transport chain

Issue: 30% decline in productivity of transport across the city in 15 years

Vehicles used

- Electric: Bike 2m³, Berlingo 3m³, Vito 6m³,
 Ducato 19m³
- Natural gas: lveco 19m³

Barge (Vokoli) Daily round-trip on Seine

Southampton

Round trip

18 electric bikes
each with
2m³ capacity
and making
4 delivery tours
each day

Organisation

Goods arrive from 6am

7.30am First delivery team board and prepare their tour

8.15am First delivery team depart on bikes Tour takes 1h30m

8.15am 2nd delivery team boards and prepares tour as boat sails to next point

- 2,500 to 3,000 packages per day
- Up to 144m³ per day

Next stages

Southamp

- Trial to start 2016/17 in Amsterdam.
- Citylab 'follower city' opportunities
- Might such a system work in London, Birmingham, Manchester?
- Will LEZ's and CO₂ free city logistics drive such innovation by 2020?
- What is the value placed on having less freight vehicles in urban areas and what would we be prepared to pay?